

Honeypots Workshop

Cristine Hoepers General Manager cristine@cert.br

Klaus Steding-Jessen

Technical Manager jessen@cert.br

CERT.br – Computer Emergency Response Team Brazil

NIC.br - Network Information Center Brazil CGI.br - Brazilian Internet Steering Committee

Agenda

- Background about the presenters
- Concepts
 - Honeypots, Honeynets, etc
- What we'll see in the hands-on
 - Honeypots similar to those of the Brazilian Honeypots
 Alliance
 - Two possible configurations

Background

CERT.br Mission

- Created in 1997 to handle computer security incident reports and activities related to networks connected to the Internet in Brazil.
 - National focal point for reporting security incidents
 - Establish collaborative relationships with other entities
 - Help new CSIRTs to establish their activities
 - Provide training in incident handling
 - Produce best practices' documents
 - Help raise the security awareness in the country

http://www.cert.br/mission.html

Q-CERT Honeypots Workshop - Doha, Qatar - April 18-19, 2007

Our Parent Organization: The Brazilian Internet Steering Committee - CGI.br

CGI.br is a multi-stakeholder organization that, among the diverse responsibilities, has the main attributions:

- to propose policies and procedures related to the regulation of Internet activities
- to recommend standards for technical and operational procedures
- to establish strategic directives related to the use and development of Internet in Brazil
- to promote studies and technical standards for the network and services' security in the country
- to coordinate the allocation of Internet addresses (IP) and the registration of domain names using <.br>
- to collect, organize and disseminate information on Internet services, including indicators and statistics

http://www.cgi.br/internacional/

Q-CERT Honeypots Workshop - Doha, Qatar - April 18-19, 2007

Brazilian Internet Steering Committee (CGI.br) Structure

- 1 Ministry of Science and Technology (Coordination)
- 2 Ministry of Communications
- 3 Presidential Cabinet
- 4 Ministry of Defense
- 5 Ministry of Development, Industry and Foreign Trade
- 6 Ministry of Planning, Budget and Management
- 7 National Telecommunications Agency
- 8 National Council of Scientific and Technological Development
- 9 National Forum of Estate Science and Technology Secretaries
- 10 Internet Expert

- 11 Internet Service Providers
- 12 Telecommunication Infrastructure Providers
- 13 Hardware and Software Industries
- 14 General Business Sector Users
- 15 Non-governmental Entity
- 16 Non-governmental Entity
- 17 Non-governmental Entity
- 18 Non-governmental Entity
- 19 Academia
- 20 Academia
- 21 Academia

certbr

Concepts

Honeypot

certbr

"A Honeypots is a security resource whose value lies in being probed, attacked or compromised."

Lance Spitzner

Honeypots: Tracking Hackers

Possible uses

- Detect automated probes and attacks
- Capture tools, new worms, etc
- Compare with IDS and firewall logs
- Raise awareness
- Identify infected/compromised machines

History

- 1988: ``Stalking the Wily Hacker", Clifford Stoll
- 1989: ``The Cuckoo's Egg", Clifford Stoll
- 1992: ``An Evening with Berferd", Bill Cheswick
- 1992: ``There Be Dragons", Steven M. Bellovin
- 1998: First honeypots:
 - Deception Toolkit (DTK), Cybercop Sting, NetFacade, and NFR BackOfficer Friendly
- 1999: The Honeynet Project started, with 30 members
- Sep/2001: Know Your Enemy book released
- Dec/2001:
 - The Honeynet Research Alliance was announced
 - Honeynet.BR Project started
- Jun/2002: Honeynet.BR joined The Honeynet Research Alliance

cert**br**

Advantages of the Technology

- There is no "normal" traffic. Everything is suspicious and potentially malicious.
- Less data to analyze than in IDS systems
- Can provide valuable information about attackers
- Can capture new types of malware

certpr

Disadvantages of the Technology

- There are potential risks for your network (depending on the type)
- Can be time consuming to maintain
- Narrow view -- sees only what is directed to it

certbr

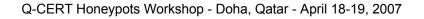
Types of Honeypots

- Low-interaction
- High-interaction

Q-CERT Honeypots Workshop - Doha, Qatar - April 18-19, 2007

- Emulate some parts of services and systems
- The attacker does not have access to the real operating system
- The attacker "can't" compromise the honeypot
- Easy to install and maintain
- Low risk
- Limited information gathering
- Examples:
 - listeners, service emulators, honeyd, Tiny Honeypot.

nic bi



nicbr

cgibl

High-Interaction Honeypots

- More difficult to install and maintain
- High risk
- Need containment mechanisms
- Extensive information gathering
- Examples:
 - honeynets, virtual honeynets

Honeynet

"A Honeynet is nothing more than one type of honeypot. Specifically, it is a high interaction honeypot designed primarily for research, to gather information on the enemy. [...] A Honeynet is different from traditional honeypots, it is what we would categorize as a research honeypot."

Lance Spitzner

Know Your Enemy: Honeynets

"A honeynet is a research tool consisting of a network specifically designed for the purpose of being compromised, with control mechanisms that prevent this network from being used as a base for launching attacks against other networks."

> Cristine Hoepers, Klaus Steding-Jessen, Antonio Montes Honeypots Applied to the CSIRT Scenario

- A network of multiple systems and applications
- Robust containment mechanism
 - may have multiple layers of control
 - sometimes called "honeywall"
- Data capture and alerting mechanisms

Honeynet Requirements

- No data pollution
 - i.e. no test or traffic generated by non-blackhats
- Data control
 - Must stop attacks from the honeynet to other systems
 - Need to be transparent to the attacker
 - Difficult to achieve with advanced attackers
 - Need to permit the attacker to work
 - download tools, connect to IRC, etc
 - Must have multiple layers of containment, to prevent from failure
- Data capture
- Data collection
- Alerting mechanism

Risks

nic br

CQID

Risks of Low-Interaction Honeypots

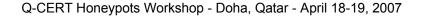
- Compromise of the real operating system running the honeypot
- The honeypot software may have vulnerabilities
- Attract attackers to your network

Risks of High-Interaction Honeypots

- A mistake in control or configuration can
 - permit your honeypot to be used to harm other networks
 - open a port to your organization network
- A compromise associated with your organization can affect its image
- Why they are so risky:
 - Level of interaction -- the attacker has full control of the machine
 - Complex to deploy and maintain
 - variety of technologies working together
 - multiple points of failure
 - New attacks and unexpected threats may not be contained or seen

When to Use Low-Interaction honeypots

- There is no sufficient hardware to set up a honeynet
- The risk of another type of honeypot is not acceptable
- The purpose is to
 - identify scans and automated attacks
 - fool script kiddies
 - distract attackers from important systems
 - collect attack signatures



nic br

When to Use High-Interaction honeypots

- The purpose is to observe the intruders activities and behaviour
 - Observe a real compromise
 - IRC conversations
- Need material for research and training in:
 - Artifact and forensic analysis

Low- x High-Interaction

	Low-Interaction	High-Interaction
Installation	Easy	More difficult
Maintenance	Easy	Time consuming
Risk	Low	High
Need for Control	No	Yes
Data gathering	Limited	Extensive
Intruder Interaction	Emulated services	Full control

In this Workshop

- Install, configure and examine a low-interaction honeypot
- Open source tools
 - OpenBSD as the base Operating System
 - OpenBSD pf firewall
 - Honeyd
 - arpd
 - Various listeners
 - Tcpdump
- This is the honeypot used in the Brazilian Honeypots
 Alliance Project

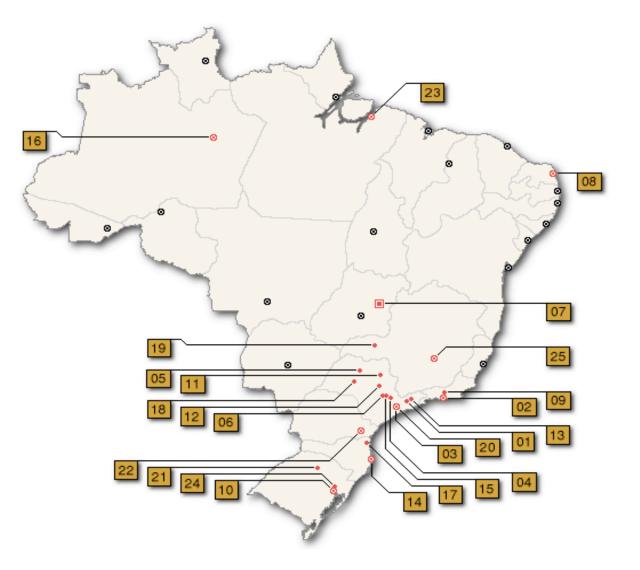
Brazilian Honeypots Alliance

certbr

Brazilian Honeypots Alliance Distributed Honeypots Project

Main objective: to increase the capacity of incident detection, event correlation and trend analysis in the Brazilian Internet

- Joint Coordination: CERT.br and CenPRA/MCT
- 37 partner institutions:
 - Academic, government, industry, telecom and military networks
- Widely distributed across the country
- Based on voluntary work
- Maintain public statistics


http://www.honeypots-alliance.org.br/

Honeynet Research Alliance Member since June 2002
 http://honeynet.org/alliance/

Cities Where the Honeypots are Located

Partner Institutions (April/2007)

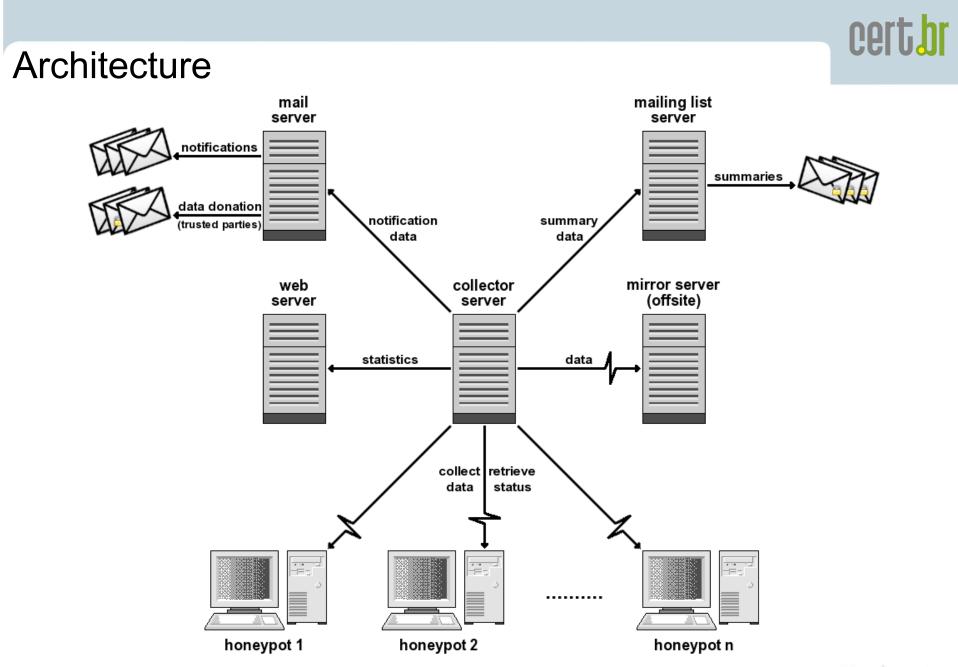
#	City	Institutions	
01	São José dos Campos	INPE, ITA	
02	Rio de Janeiro	CBPF, Embratel, Fiocruz, IME, PUC-Rio, RedeRio, UFRJ	
03	São Paulo	ANSP, CERT.br, Diveo, Durand, UNESP, UOL, USP	
04	Campinas	CenPRA, ITAL, UNICAMP, UNICAMP FEEC	
05	São José do Rio Preto	UNESP	
06	Piracicaba	USP	
07	Brasília	Brasil Telecom, Ministry of Justice, TCU, UNB LabRedes	
08	Natal	UFRN	
09	Petrópolis	LNCC	
10	Porto Alegre	CERT-RS	
11	Ribeirão Preto	USP	
12	São Carlos	USP	
13	Taubaté	UNITAU	
14	Florianópolis	UFSC DAS	
15	Americana	VIVAX	
16	Manaus	VIVAX	
17	Joinville	UDESC	
18	Lins	FPTE	
19	Uberlândia	CTBC Telecom	
20	Santo André	VIVAX	
21	Passo Fundo	UPF	
22	Curitiba	PoP-PR, PUC PR	
23	Belém	UFPA	
24	São Leopoldo	Unisinos	
25	Belo Horizonte	Diveo	

Main Characteristics of the Project

- Partners do not receive a "black box"
 - They have access to their honeypot
 - They can extend the honeypot's configuration
- The honeypot does not capture production data
 Only data directed to the honeypot is collected
- They can internally use the data captured by their own honeypot
 - As a complement to their IDS infrastructure
 - To detect infected machines, etc

Details of the Honeypots

- OpenBSD as the base Operating System (OS)
- Honeyd
 - Emulates different OSs
 - Runs listeners to emulate services (IIS, ssh, smtp, etc)
- Proxy arp using arpd
- Payload logged using pf
- Each honeypot uses a netblock range (from /28 to /24)
 - 1 management IP
 - Other IPs are used to emulate different OSs and services
- Ability to collect malware samples
 - Listeners developed for: mydoom, subseven, socks, ssh, etc.
- Ability to implement spam traps



cert**br**

Why Use OpenBSD

- Familiarity
- number of security holes is extremely low, if compared with other operating systems
- good proactive security features
 W^X, ProPolice, systrace, random lib loading order
- well-defined upgrade cicle (twice a year)
- runs in multiple architectures
 - i386, sparc, sparc64, amd64, etc
- one of the best available free packet filters
 - stateful, redundancy, integrated queueing (ALTQ), etc
- firewall logs in libpcap format

Q-CERT Honeypots Workshop - Doha, Qatar - April 18-19, 2007

cgibr nicbr

Honeyd

Honeyd

"A framework for honeypots, that simulates virtual computer systems at the network level."

Niels Provos Honeyd: A Virtual Honeypot Daemon

Honeyd Features

- Simulates computer systems running on unallocated network addresses
- Simulates several virtual hosts at the same time
- Permits the configuration of arbitrary services
- Simulates an OS at TCP/IP stack level
 Fools nmap
- Supports dynamic redirection of a service
- Supports only IPv4 TCP, UDP and ICMP protocols
- Receive network data
 - Through a special route for the virtual IP addresses
 - Using proxy ARP (arpd)

cert**br**

Listeners

- Main goal
 - close the three-way handshake
 - log the activity
- Mainly two kinds
 - need to understand the protocol (http, ftp, etc)
 - just need to let a connection happen
- Listeners can be executed:
 - by honeyd, or
 - Just standalone

Hands-on

Format

nic br

CQIDI

- The remaining sessions will be hands-on
- Notebooks at the training area
 - Have OpenBSD and some basic tools installed
 - Need to install and configure the honeypot-related tools

References

- CERT.br
 <u>http://www.cert.br/</u>
- OpenBSD <u>http://www.openbsd.org/</u>
- Honeyd
 <u>http://www.honeyd.org/</u>
- Brazilian Honeypots Alliance
 <u>http://www.honeypots-alliance.org.br/</u>
- Previous presentations about the project <u>http://www.cert.br/presentations/</u>
- Honeynet Research Alliance

http://www.honeynet.org/alliance/

certh